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Abstract

A method for Learning from Demonstration (LFD) is presented and
evaluated on a simulated Robosoft Kompai robot. The presented algo-
rithm, called Predictive Sequence Learning (PSL), builds fuzzy rules de-
scribing temporal relations between sensory-motor events recorded while
a human operator is tele-operating the robot. The generated rule base
can be used to control the robot and to predict expected sensor events
in response to executed actions. The rule base can be trained under dif-
ferent contexts, represented as fuzzy sets. In the present work, contexts
are used to represent different behaviors. Several behaviors can in this
way be stored in the same rule base and partly share information. The
context that best matches present circumstances can be identified using
the predictive model and the robot can in this way automatically identify
the most suitable behavior for precent circumstances. The performance of
PSL as a method for LFD is evaluated with, and without, contextual in-
formation. The results indicate that PSL without contexts can learn and
reproduce simple behaviors. The system also successfully identifies the
most suitable context in almost all test cases. The robot’s ability to re-
produce more complex behaviors, with partly overlapping and conflicting
information, significantly increases with the use of contexts. The results
support a further development of PSL as a component of a dynamic hi-
erarchical system performing control and predictions on several levels of
abstraction.
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1 Introduction

Learning from Demonstration (LFD) is a well-established technique for teaching
robots new behaviors. One of the greatest challenges in LED is to implement a
learning algorithm that allows the robot pupil to generalize a sequence of actions
demonstrated by the teacher such that the robot is able to perform the desired
behavior under varying conditions. In earlier work (Billing et al., 2010b, 2011),
we have developed and evaluated the algorithm Predictive Sequence Learning
(PSL) as a method for LFD. PSL can be trained from demonstrations performed
via tele-operation and used as a controller for robots. The algorithm treats
control as a prediction problem, such that the next action is selected based on
the sequence of recent sensory-motor events. In addition, PSL also produces
predictions of expected sensor states. While these are not directly useful for
control, predictions of sensor states appear to serve well as a method for behavior
recognition (Billing et al., 2010a).

Here, we evaluate the possibility to use a context layer that interacts with
the PSL algorithm, both during learning and reproduction of behaviors. The
context layer activates relevant parts of the PSL knowledge base while inhibiting
knowledge that could interfere with the current behavior, potentially allowing
PSL to learn and reproduce more complex behaviors. The work can be seen as
one step towards integrating PSL in a dynamic hierarchical learning system.

An introduction to LFD and hierarchical learning systems is presented in
Section 2, followed by a more precise problem statement in Section 3. The PSL
algorithm is presented in Section 4 and the problem of knowledge interference
is described in Section 5. The experimental setup used for the present work is
described in Section 6 and a formulation of expected results is given in Section
7. Finally, results are presented in Section 8 followed by a discussion in Section
9.

2 Background

One common approach to LFD is to map the demonstration onto a set of pre-
programmed or previously learned primitives controllers (Billing & Hellstrom,
2010). The approach has strong connections to behavior-based architectures
(Matari¢ & Marjanovic, 1993; Matari¢, 1997; Arkin, 1998) and earlier reactive
approaches (e.g. Brooks, 1986, 1991). When introducing behavior primitives,
the LFD process can be divided into three tasks (Billing & Hellstrom, 2010):

1. Behavior segmentation where a demonstration is divided into smaller seg-
ments.

2. Behavior recognition where each segment is associated with a primitive
controller.

3. Behavior coordination, referring to identification of rules or switching con-
ditions for how the primitives are to be combined.



The approach represents one way of introducing good bias in learning and solve
the generalization problem by relying on previously acquired behavioral knowl-
edge. While there are many domain specific solutions to each one of these three
subproblems, they appear very difficult to solve in the general case.

One argument for the use of behavior primitives in LFD is that known behav-
iors can constitute parts (i.e., primitives) of other, more complex, behaviors. If
this process can be implemented in a general way, it would allow learnt behaviors
to act as primitives in future learning sessions. The approach would potentially
allow the robot to learn increasingly complex behaviors as its knowledge base
grows, producing an hierarchical architecture of controllers (Byrne & Russon,
1998). While this approach appears to have great potential, it requires that not
only pre-programmed primitives, but also controllers generated through learn-
ing, can be recognized as parts of a demonstrated behavior.

This approach has many connections to biology and specifically the mirror
system (e.g. Rizzolatti et al., 1988; Gallese et al., 1996; Brass et al., 2000; Riz-
zolatti & Craighero, 2004). While the role of the mirror system is still highly
debated, several groups of researchers propose computational models where per-
ception and action are tightly interweaved. Among the most prominent exam-
ples are the work by Demiris & Khadhouri (2006) proposing an architecture
called Hierarchical Attentive Multiple Models for Execution and Recognition
(HAMMER). A similar theoretical framework is presented by Haruno et al.
(2003) under the name Hierarchical Modular Selection and Identification for
Control (HMOSAIC). Both these architectures implement a set of modules,
where each module is an inverse model (controller) paired with a forward model
(predictor). The inverse and forward models are trained together such that the
forward model can predict sensor data in response to the actions produced by
the inverse model. The inverse model is tuned to execute a certain behavior
when the forward model produces good predictions. The prediction error is
used to compute a bottom-up signal for each module. Based on the bottom-up
signal, a top-down responsibility signal or confidence value is computed and
propagated to each module. The output of the system is a combination of the
actions produced by each inverse model, proportional to their current responsi-
bility. The responsibility signal also controls the learning rate of each module,
such that modules are only updated when their responsibility is high. In this
way, modules are tuned to a specific behavior or parts of a behavior. Since
the prediction error of the forward model is used as a measure of how well the
specific module fits present circumstances, it can be seen as a metric of im-
itation (Billard et al., 2003) that is learnt together with the controller. The
architecture can be composed into a hierarchical system where modules are or-
ganized in layers, with the lowest layer interacting with sensors and actuators.
The bottom-up signal constitutes sensor input for the layer above and actions
produced by higher levels constitute the top-down responsibility signal.

One motivation for this architecture lies in an efficient division of labor be-
tween different parts of the system. Each module can be said to operate at a
specific temporal resolution. Modules at the bottom layer are given the highest
temporal resolution while modules higher up in the hierarchy have decreasing



resolution, allowing these modules to express dependencies over longer periods
of time. State variables that change slowly compared to a specific module’s res-
olution are ignored by that module and are instead handled by modules higher
up in the hierarchy. Slowly changing states that lead to high responsibility for
the module is referred to as the module’s context. In a similar fashion, variables
that change fast in relation to the temporal resolution are handled lower in the
hierarchy. This allows each module to implement a controller where the behavior
depends on relatively recent states, at its level of temporal resolution. Long tem-
poral dependencies are modeled by switching between modules, which removes
the requirement for each model to capture these dependencies. Furthermore,
updates of a single behavior or parts of a behavior will only require updates of
a few modules and will not propagate changes to other modules. See Billing
(2009) for a longer discussion on these aspects of hierarchical architectures.

The HAMMER and MOSAIC architectures make few restrictions on what
kind of controllers each module should implement. We argue however, that
modules should be semi-reactive, meaning that action selection and predictions
of sensor events should be based on recent sensor and motor events. Strictly
reactive modules are not desirable since each module must be able to model any
dependency with a temporal resolution too high for modules at the layer above.

However, the division of behavior into modules also has a number of draw-
backs. The possibility for the system to share knowledge between behaviors is
limited. Moreover, the system has to combine actions produced by different
modules, which may be difficult in cases when more than one module receives
high responsibility.

One architecture with similarities to HAMMER and MOSAIC able to share
knowledge between different behaviors is Recurrent Neural Network with Para-
metric Bias (RNNPB) (Tani et al., 2004). Both input and output layer of the
network contain sensor and motor nodes as well as nodes with recurrent connec-
tions. In addition, the input layer is given a set of extra nodes, representing the
PB vector. The network is trained to minimize prediction error, both by train-
ing the network using back-propagation and by changing the PB input vector.
The PB vector is however updated slowly, such that it organizes into what could
be seen as a context layer for the rest of the network. In addition to giving the
network the ability to represent different behaviors that share knowledge, the
PB vector can be used for behavior recognition.

All these architectures can be seen as examples of a larger body of work em-
ploying the motor system for perception and imitation (e.g. Atkeson & Schaal,
1997; Billard, 2001; Demiris & Hayes, 2002; Demiris & Johnson, 2003; Alis-
sandrakis et al., 2002; George, 2008), with an emphases on being biologically
plausible. While there are many important differences between these works,
both in proposed architectures and the claims that they make, there is also a
significant common ground. One attempt to describe this common ground was
made by Billing (2009), proposing four criteria for general learning ability:

1. Hierarchical structures

Knowledge gained from learning should be represented in hierarchies.



2. Functional specificity

Knowledge gained from learning should be organized in functionally spe-
cialized modules.

3. Forward and inverse

Prediction error reflects how well the state definition satisfies the Markov
assumption, and by consequence a forward model can be used to improve
knowledge representation when paired with an inverse model.

4. Bottom-up and top-down

Both bottom-up and top-down signals must be propagated through the
hierarchical structure. Bottom-up signals represent the state of modules,
and the top-down signals specify context.

These criteria can be seen as typical properties of a system able to internalize
a simulation of percepts, in response to actions. That should be understood as
one way to give the robot an inner world, a simulation of the physical world that
does not rely on a pre-defined physics simulator but is generated from interac-
tions with the world. Such a simulation is inherently grounded in the robot’s
sensors and actuators and is therefore not subject to the symbol grounding
problem (Harnad, 1990). A minimalistic implementation of this approach can
be found in the work by Ziemke et al. (2005). This approach also has tight con-
nections with the work by Barsalou and colleagues (e.g. Barsalou et al., 2003;
Barsalou, 2009), describing the brain as a system simulating sensor percepts in
relation to motor activity.

Rohrer & Hulet (2006) proposed an architecture called Brain Emulating Cog-
nition and Control Architecture (BECCA). The focus of BECCA was to capture
the discrete episodic nature of many types of human motor behavior, while lim-
iting the use of task-specific prior knowledge. BECCA was presented as a very
general reinforcement learning system, applicable to many types of learning and
control problems. One of the core elements of BECCA is the temporal difference
(TD) algorithm Sequence Learning (SL) (Rohrer, 2007; Rohrer et al., 2009). SL
builds sequences of passed events which is used to predict future events, and
can in contrast to other TD algorithms base its predictions on a sequence of
previous states.

3 Problem statement

Inspired by BECCA (Rohrer & Hulet, 2006) and specifically SL (Rohrer, 2007;
Rohrer et al., 2009), we developed the PSL algorithm as a method for LFD
(Billing et al., 2010a,b). PSL has many interesting properties seen as a learn-
ing algorithm for robots. It is model free, meaning that it introduces very few
assumptions into learning and does not need any task specific configuration.
PSL can be seen as a variable-order Markov model. Starting out from a reac-
tive (first-order) model, PSL estimates transition probabilities between discrete



sensory-motor states. For states that do not show Markov property, the order
is increased and PSL models the transition probability based on several passed
events. In this way, PSL will progressively gain memory for parts of the behavior
that cannot be modeled in a reactive way.

While previous evaluations of PSL (Billing et al., 2010a,b, 2011) show that
the algorithm can be used both for control and recognition of several different
behaviors, PSL is subject to combinatorial explosion when the demonstrated
behavior requires modeling of long temporal dependencies. PSL can however
efficiently model short temporal dependencies in a semi-reactive way and is a
good candidate for implementation of forward and inverse models in an ar-
chitecture similar to those described above. The fact that PSL is not able to
implement an arbitrary controller is here seen as an important bias and serves as
a way to get around the “no free lunch” theorems (Wolpert & Macready, 1997;
Ho & Pepyne, 2002). In the present work we combine PSL control with behavior
recognition in order to reduce these limitations and take one step closer to a
hierarchical learning systems satisfying all criteria for general learning ability
(Section 2).

4 Predictive Sequence Learning

PSL builds fuzzy rules, referred to as hypotheses h, describing temporal depen-
dencies between a sensory-motor event e;;; and a sequence of passed events
(et_|hH_1, €t |h|42) - s et), defined up until current time ¢.

b (THMH is Efy A jniyn is Ely_y Ao ATy s E{’) = Yo is B
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Y; is the event variable and E" (e) is a fuzzy membership function returning
a membership value for a specific e. The right hand side E" is a membership
function comprising expected events at time ¢ + 1. |h| denotes the length of
h, i.e., the number of left-hand-side conditions of the rule. Both E and E are
implemented as standard cone membership functions with base width & (e.g.
Klir & Yuan, 1995).

A set of hypotheses can be used to compute a prediction é;41 given a se-
quence of passed sensory-motor events 7, defined up to the current time ¢:

n:(el,eg,...,et). (2)

The process of matching hypotheses to data is described in Section 4.1. The
PSL learning process, where hypotheses are generated from a sequence of data,
is described in Section 4.2 and interaction with the context layer is described
in Section 4.3. The description of PSL given here is similar, but not identical,
to Fuzzy PSL as described in our previous evaluation of this algorithm (Billing
et al., 2011). A few changes to the algorithm was introduced as a result of
optimizations made in order to allow on-line predictions with multiple contexts.
These changes are further discussed in Section 4.4.



4.1 Matching hypotheses

Given a sequence of sensory-motor events 1 (Equation 2), a match «; (h) of the
rule is given by:

|h|—1

ay (h) = /\ E! (e4—it1) (3)

where A is implemented as a min-function.
Hypotheses are grouped in fuzzy sets C' whose membership value C (h) de-
scribes the confidence of h at time t¢:

C(h) === (4)

> ak(h)

k=th
where t" is the creation time of h or 1 if h existed prior to training. Le., C (h) is
a weighted average of how well the h predicts the event ey 1, over all observation
up to time t. Each set C represents a context and can be used to implement a
specific behavior or part of a behavior. The responsibility signal A\; (C) is used
to control which behavior is active at a specific time. The combined confidence
value C} (h), for hypothesis h, is a weighted average over all C:

20 (h) A (C)
C

al="xe
C

(5)

C, can be seen as a fuzzy set representing the active context at time t.
Hypotheses contribute to a prediction in proportion to their membership in C
and the match set M. M is defined in three steps. First, longest matching
hypotheses are selected:

M ={h||h] = |W'| forall {N|a(h)>0}} (6)
The best matching h € M is selected:

M ={h|a(h)>a(h) forall {h c M}} (7)
Finally, the match set M is defined as:
- C(h heM
M (h) = (h) , (8)
0 otherwise

The aggregated prediction E (e¢41) is computed using the Larsen method
(e.g. Fullér, 1999):

E(ers1) = \/En (ers1) M (h) (9)
h



E is converted to crisp values using a center of maz defuzzification (e.g. Klir
& Yuan, 1995, p. 337):

min{e | E () = max (E)} —|—max{6 | E(e) = max (E>}
2

é:

4.2 Generating hypotheses

Hypotheses can be generated from a sequence of sensory-motor events 7. During
training, PSL continuously makes predictions and creates new hypotheses when
no matching hypothesis produces the correct prediction E. The exact training
procedure is described in Algorithm 1.

For example, consider the event sequence 1 = abccabecabee. Let t = 1. PSL
will search for a hypothesis with a left hand side matching a. Initially, the
context set C' is empty and PSL will create a new hypothesis (a) = b which is
added to C with confidence 1, denoted C (a = b) = 1. The same procedure will
be executed at t = 2 and ¢ = 3 such that C ((b) = ¢) =1 and C ((¢) = ¢) = 1.
At t = 4, PSL will find a matching hypothesis (¢) = ¢ producing the wrong
prediction c¢. Consequently, a new hypothesis (¢) = a is created and confidences
are updated such that C ((¢) = ¢) = 0.5 and C ((¢) = a) = 1. The new hypoth-
esis receives a higher confidence since confidence values are calculated from the
creation time of the hypothesis (Equation 4). The predictions at t = 5 and ¢t = 6
will be correct and no new hypotheses are created. At ¢t =7, both (¢) = a and
(¢) = ¢ will contribute to the prediction E. Since the confidence of (¢) = a is
higher than that of (¢) = ¢, E will defuzzify towards a, producing the wrong
prediction (Equation 10). As a result, PSL creates a new hypothesis (b, ¢) = c.
Similarly, (¢,¢) = a will be created at ¢ = 8. PSL is now able to predict all
elements in the sequence perfectly and no new hypotheses are created.

Source code from the implementation used in the present work is available
online (Billing, 2011).

4.3 Computing context responsibility

PSL is not only used as a controller but also as a method for behavior recogni-
tion. By letting PSL compute one prediction for each context, the responsibility
of each context can be changed based on the size of respective prediction error.
The method used here has strong similarities with the responsibility update
mechanism used in the MOSAIC architecture (Haruno et al., 2001). Similar
mechanisms can also be found in other learning and control frameworks with
hierarchical structure (e.g. Demiris & Khadhouri, 2006).

One important difference between PSL and most other approaches is however
that the context layer of PSL allows partial knowledge overlap between contexts.
Furthermore, this overlap may be fuzzy in the sense that each hypothesis is a
member of the context to a certain degree. This allows a much more flexible or-
ganization of knowledge compared to an architecture that requires each module



Algorithm 1 Predictive Sequence Learning (PSL)

Require: ) = (e, ea,...,er) where T denotes the length of the training set
Require: & as the precision constant, see text

— e e
R vl =

let t — 1
let n= (61,62,. . .,€t)
let C — o
let E as Equation 9
if ¥ (e;41) < & then
let hye, = CreateHypothesis (n,C) as defined by Algorithm 2
C (hnew) —1
end if
Update confidences C (h) as defined by Equation 4
sett =t+1
if t<T then
goto 2

: end if

Algorithm 2 CreateHypothesis

Require: n = (e1,e2,...,¢;)
Require: C: h — [0,1]
Require: « as defined by Equation 3

1:
2:

14:

let M (h) as Equation 8
let M = {h | E" (e41) > & A M (h) > O} where & is the precision constant,
see Section 4.4
if M = () then
let £* be a new membership function with center e; and base e
return h,c, : (Y4 is E*) = YTi1is B
else
let he M
if C (ﬁ) =1 then
return null
else
let £* be a new membership function with center €|l and base ¢

return hpey (Tt|h| 1S E*7Tt7‘ﬁ‘+1 1S E(Lﬁkl’ oo, Tyis Eg) =
Tt+1 18 E
end if
end if




to be strictly separated from other modules. Several contexts may also be active
simultaneously, without the need for a separate action coordination mechanism.

Let the Etc be the prediction for context C at time t, as given by Equation
9. The prediction for each context is calculated with the responsibility signal
At (C) = 1 and the responsibility of all other contexts equal to zero (see Equation
5). Based on these predictions, the responsibility signal for each context is
updated using Bayes’ rule:

oxpy [ (EEe)=1)°
e ( i ) (11)
% lAt—l (C;) exp <W>]

i=1

A (C) =

where e; represents the observed sensory-motor event at time t. N is the
number of contexts and o2, corresponding to the variance, is used as a scaling
constant controlling the size of confidence changes in relation to prediction error
size.

4.4 Parameters and implementation

A clear description of parameters is important for any learning algorithm. Pa-
rameters always introduce the risk that the learning algorithm is tuned towards
the evaluated task, producing better results than it would in the general case.
We have therefore strived towards limiting the number of parameters of PSL.
The original design of PSL was completely parameter free, with the exception
that continuous data was discretized using some discretization method. The
version of PSL proposed here can be seen as a generalization of the original al-
gorithm (Billing et al., 2010b,a) where the width ¢ of the membership function
FE determines the discretization resolution. In addition, a second parameter is
introduced, referred to as the precision constant &. & is with fuzzy logic ter-
minology an a-cut, i.e., a threshold over the fuzzy membership function in the
interval [0,1] (e.g., Klir & Yuan, 1995).

¢ controls how generously PSL matches hypotheses. A high ¢ makes the
algorithm crisp but typically increases the precision of predictions when a match
is found. Conversely, a low ¢ reduces the risk that PSL reaches unobserved states
at the cost of a decreased prediction performance. The high value of € can be
compared to a fine resolution data discretization for the previous version of PSL.

& is only used during learning, controlling how exact a specific £ has to
be before a new hypothesis with a different E is created. A large & reduces
prediction error but typically results in more hypotheses being created during
learning.

Both € and & control the tolerance to random variations in data and can
be set based on how precise we want that PSL to model the data. Small ¢ in
combination with large & will result in a model that closely fits training data,
typically producing small prediction errors but also requires more training data
in order to cover the state space.
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Updates of the responsibility signal (Equation 11) introduces a third param-
eter (the variance o?) scaling the prediction error and consequently controlling
how quickly the responsibility signal changes. While this parameter could be
estimated form actual data, it was manually set to a fixed value in the present
work.

The original implementation of Fuzzy PSL (Billing et al., 2011) requires that
the prediction for each context is computed separately, significantly increasing
the computational load for each new context. For the present work, the algo-
rithm was therefore reimplemented such that a majority of computations to be
shared for all contexts, resulting in a minor extra load when multiple contexts
are used. Even though no deeper study comparing the two versions of the algo-
rithm has been made, our initial tests did not indicate any significant difference
other than reduced computational requirements. In earlier work (Billing et al.,
2010b,a), we used a discrete version of PSL that however differs from the present
algorithm in several ways. See Billing et al. (2011) for details.

5 Knowledge interference

In early evaluations of PSL (Billing et al., 2010a,b), we noticed that increased
training could affect the performance in both a positive and a negative way. On
the positive side, more demonstrations provide more sensory-motor patterns
that PSL can reuse in many situations. As long as the local sensory-motor his-
tory provides enough information to reliably separate between two situations,
more training is always positive. However, when the recent sensory-motor his-
tory does not provide reliable information to select the right action, PSL pro-
duces longer hypotheses in order to increase prediction performance. While this
in itself is not a large problem, it increases the risk for inappropriate action
selection when PSL is used as a controller. If the current sensory-motor history
does not match any long hypothesis, PSL falls back on shorter, less reliable, hy-
potheses. As a result, PSL sometimes selects an inappropriate action. We call
this problem knowledge interference, since knowledge of one behavior or part of
a behavior is interfering with the behavior currently being executed.

One potential solution to this problem is to separate behavioral knowledge
into several contexts, and let a behavior recognition mechanism select one or
several context that should be responsible for the present situation. Hypotheses
that are strongly associated with the active contexts are prioritized over other
hypotheses, and hypotheses that would have interfered with the current behavior
can in this way be ignored. This can be seen as one way to achieve the criterion
of Functional specificity presented in Section 2.

We have previously evaluated several techniques for behavior recognition
(Billing & Hellstrom, 2008) and also shown that PSL can be used for behavior
recognition (Billing et al., 2010a), based on the same model as used for control.
We are however not aware of any previous work that connects the behavior
recognition capabilities of PSL with a PSL based controller, such that the robot
can continuously evaluate the responsibility of each context and in this way

11



reduce the problem of knowledge interference.

6 Experimental setup

In order to evaluate PSL, a simulated Robosoft Kompai robot (Robosoft, 2011)
was used in the Microsoft RDS simulation environment (Microsoft, 2011). The
270 degree laser scanner of the Kompai was used as source for sensor data
and the robot was controlled by setting linear and angular speeds. We used a
similar setup in previous work (Billing et al., 2011) and here extend earlier tests
to include the new features of PSL.

Demonstrations were performed via tele-operation using a joypad, while sen-
sor and motor data was recorded with a temporal resolution of 20 Hz. The di-
mensionality of the laser scanner was reduced to 20 dimensions using an average
filter. Angular and linear speeds were fed directly into PSL. € was set to 0.8 m
for laser data and 0.1 m/s for motor data. & = 0.95 was used for both sensor
and motor data and o2 was set to 5.

In cases PSL does not find a match and is unable to produce a prediction, a
reactive obstacle avoidance was used to control the robot. While PSL normally
has full control over the robot, it can run into unknown states for a short periods
of time, usually when close to walls and obstacles. The obstacle avoidance can
in these cases prevent a collision. The robot may of course still have contact
with objects as long as PSL is in control.

Four behaviors were used, each one demonstrated ten times with some vari-
ations. Each behavior is described below. Numbered areas are illustrated in
Figure 1. The behaviors were intentionally designed to overlap, such that the
robot would experience similar situations in parts of several behaviors.

ToTV Started from various locations in the apartment (area 2, 4, 5, and 6)
and finished in front of the TV (area 1).

Wake Started close to the bed (area 3) and finished in the corridor (area 5).

ToKitchen Started in the hallway (area 7), made a left turn in the corri-
dor (area 5) followed by a right turn towards the kitchen, finally turning
around and stopping in the kitchen (area 2).

Serve Started in the kitchen (area 2), went clockwise around the table, slowly
passing by each chair one by one, through area 8, and back to the kitchen.
The behavior finished by turning around and stop.

6.1 Evaluation of simultaneous control and recognition

In order to test how well PSL could reproduce the demonstrated behaviors, and
generalize, ten test cases were designed.

Case 1 PSL was trained on demonstrations of the ToTV behavior. Tests are
made starting from area 3.

12



Microsoft Robotics Developer Studio

Figure 1: The simulated apartment environment used for evaluation. Num-
bered regions indicate critical areas used as reference for demonstrations and
reproduced behaviors (see text).
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Case 2 PSL was trained on demonstrations from the ToTV and Wake behav-
iors. Tests were made starting form area 3.

Case 3 PSL was trained on demonstrations from the ToKitchen behavior. Tests
were made starting from area 7.

Case 4 PSL was trained on demonstrations from the Serve behavior. Tests
were made starting from area 2.

Case 5, 6, and 7 PSL was trained with demonstrations of all four behaviors.
The training data was not separated into different behaviors but trained
and represented as a single PSL context. Tests were made starting from
area 3 (case 5), area 7 (case 6) and area 2 (case 7).

Case 8, 9, and 10 PSL was trained on demonstrations from all four behav-
iors. The training data was separated into four different contexts, such
that each context represented one behavior. Behavior recognition was
used to continuously update the responsibility for each context. Tests
were made starting from area 3 (case 8), area 7 (case 9) and area 10 (case
7).

Apart from the demonstrated data, the robot did not get any information of
which behavior to execute at a certain time. When trained on more than one
behavior, PSL had to recognize the present starting location and use this infor-
mation to select the appropriate behavior.

6.2 Evaluation of behavior recognition during manual con-
trol

In addition to the evaluation described in the previous section, PSL was evalu-
ated as a method for behavior recognition during manual control. This can be
seen as an attempt to reproduce our previous results (Billing et al., 2010a) in a
more realistic setting.

A single demonstration was made starting from area 7, moving out of the
room and turning left towards area 6. After approximately 17 seconds, the
robot reaches area 3, turns around and goes back towards area 6, out of the
bedroom and reaches area 5 at t = 30 s. The robot continuous with the table
to its right, passes area 8 at t = 37 s and makes a right turn around the table
towards the kitchen. After 43 seconds of driving, the robot reaches the kitchen,
turns around, leaves the kitchen at t = 48 s and makes a second lap around the
table. When reaching area 8 for the second time (t = 56 s) the robot makes a
left turn towards the TV and parks in front of the TV after a total of 67 seconds
of driving.

7 Hypothesis

Since PSL represents behaviors as a semi-reactive controller, no specific coordi-
nation is required in order to merge two demonstrated behaviors. One example
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when this is useful is when an existing behavior is to be extended to work in a
partly new environment. In order to evaluate this aspect of PSL, test cases 1
and 2 were designed. Since no demonstrations in the ToTV behavior was made
starting from the bed (area 3), test case 1 is expected to be a difficult task to
reproduce. In test case 2, the original demonstration set is however combined
with the demonstrated Wake behavior, showing how to exit the bedroom. The
performance of test case 2 is therefore expected to be significantly higher than
for case 1.

While the problem of knowledge interference (Section 5) may occur both
within and between behaviors, the risk clearly increases when the robot is
thought to act differently in several similar situations. Billing et al. (2010b)
successfully taught a Khepera robot three partial behaviors, but when they
were combined into a complete behavior, none of the partial behaviors could be
reproduced correctly. In the present work, we aim to reproduce this scenario
in a more realistic setting. Test cases 2, 3, and 4 represent three fairly sim-
ple behaviors that PSL should be able to reproduce when thought separately.
However, since the three behaviors have significant overlaps, knowledge of one
behavior may interfere with knowledge of another, and the performance of is
therefore expected to decrease when all behaviors are trained together (case 5,
6, and 7).

Test cases 8, 9, and 10 were designed to evaluate the effect of behavior
recognition during execution of the three different behaviors. If the behavior
recognition system works as intended, the performance of case 8, 9, and 10
should be significantly higher than for cases 5, 6, and 7, respectively.

8 Results

Results for all ten test cases are summarized in Table 1. In test case 1, the
robot were only able to exit the bedroom in 12 out of 20 runs, but reached the
TV (area 1) every time it exited the bedroom. In test case 6, the robot reached
the kitchen in 12 out of 20 runs, but took the right way only twice. During the
other 10 runs, the robot went around the table as demonstrated in the Serve
behavior, and in this way reached the kitchen. Similarly, in test case 9, the
robot reached the kitchen in 15 out of 20 runs, and took the demonstrated path
to the kitchen 13 times.

Figure 2 displays the responsibility signals from one execution of test case 8.
The robot starts from area 3 (see Figure 1) with initially equal responsibilities
for all four behaviors. The behavior recognition system quickly recognizes the
present situation as a Wake behavior and the robot consequently starts to ex-
ecute that behavior. The robot reaches area 5 after approximately 10 seconds.
When continuing through the corridor, the Wake behavior no longer matches
present circumstances causing a shift to the ToTV behavior. The robot also
passed by the corridor during the ToKitchen behavior, making that behavior
a possible candidate. Since the ToTV behavior had some demonstrations also
from area 6, it receives increased confidence earlier than ToKitchen. As a result,
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Test case Reached TV | Reached Kitchen \ Fail ‘

1: ToTV 12 0 8
2: ToTV 4 Wake 18 0 2
3: ToKitchen 0 19 1
4: Serve 0 19 1
5: All in one context 1 13 6
6: All in one context 5 2 (12) 3
7: All in one context 5 14 1
8: All in separate contexts 15 3 2
9: All in separate contexts 3 13 (15) 2
10: All in separate contexts 0 17 3

Table 1: Results for the ten test cases.
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Figure 2: Typical responsibility signal from one execution of test case 8.

ToTV takes control of the robot as the responsibility of the Wake behavior de-
creases, quickly suppressing ToKitchen. After approximately 20 seconds, when
the robot is passing by area 8, both ToTV and Serve have small prediction er-
rors, causing slight fluctuations of the responsibilities. The high prior for ToTV
will however cause the system to remain with that behavior. Finally, after ap-
proximately 30 seconds, the robot parks in front of the TV (area 1). Figure 3
displays the results from the evaluation of behavior recognition during manual
control (Section 6.2).

9 Discussion

On the whole, results presented in Section 8 match our expectations (Section 7).
Without the use of behavior recognition (case 5, 6 and 7), the robot successfully
reproduces the demonstrated behavior only in 17 out of 60 trails. This is a
clear case of what we call knowledge interference (Section 5) since the same
set of demonstrations, when divided up in different behaviors (case 2, 3 and 4),
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Figure 3: Respounsibility signal during manual control of the robot (Section 6.2).

resulted in successful reproductions in almost all trails. This problem is reduced
when behavior recognition is active (case 8, 9 and 10), increasing the correctly
reproduced trails to 45 out of 60.

The responsibility signals computed by the behavior recognition system (fig-
ures 2 and 3) is much more stable than previous evaluations have shown (Billing
et al., 2010a). We believe that this can partly be explained by the large dimen-
sionality of the laser scanner data, compared to the infrared proximity sensors of
the Khepera robot used in previous experiments. Another reason may be that
the fuzzy version of PSL used in this work produces smaller, and more reliable,
prediction errors than the discrete version of PSL previously used. See Billing
et al. (2011) for a comparison.

The results from behavior recognition during manual control (Figure 3) in-
dicate that the responsibility signal serves as an extra memory for PSL. During
t = 30 to 37s and t = 48 to 56s, the robot drives around the table in a similar
way as during both ToTV and Serve behaviors (see Section 6.2 for details). The
first episode is interpreted as a ToTV behavior while the Serve behavior receives
the highest responsibility during the second episode. The reason for this dif-
ference is that the responsibility of each context is updated based on its prior
responsibility (Equation 11), allowing the responsibilities to remain unchanged
as long as the most active context does not produce significantly larger predic-
tion errors than any other context. While this property may be a disadvantage
in some situations, we argue that it serves as a powerful way to activate rele-
vant parts of the PSL knowledge base based on information much further back
in time than PSL can represent using hypotheses alone. At the same time, the
reactive properties of the system remains. Even though the responsibilities for
the ToTV and Serve behaviors remain stable during the manual demonstration,
the system is able to reevaluate this interpretation as soon as the demonstrated
behavior is diverging from its expected path (e.g., t = 37 and t = 56).

One of the weak parts of the present approach is that it still relies on a
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human to divide the demonstrated data in a way that reduces knowledge inter-
ference. We see no reason to believe that the human’s interpretation of what is
one behavior, and what is another, perfectly corresponds to the robot’s need to
categorize experiences. As a result, there may be other ways to divide the set
of demonstrations used in this work (a total of 40 demonstrations) such that
the results would be significantly better, or significantly worse. One way to get
away from this problem may be to identify contexts (Equation 4) automati-
cally, for example based on an entropy measure. While hypotheses frequently
selected in sequence should go into the same context, each context should keep
the amount of conflicting hypotheses low. This could possibly be formulated
as an optimization problem where the total entropy over all contexts is to be
minimized. Exploring this possibility to automatically identify contexts that
potentially could be interpreted as behaviors from a human’s point of view is
part of future work.

Another interesting feature of the architecture presented here is that it pro-
vides a clean interface to higher level control. From an engineering point of view,
PSL could be seen as a reactive layer, similar to the ones frequently used in hy-
brid systems, but with the ability to also feed information to the deliberating
parts of the system. PSL could consequently constitute both a semi-reactive
actuator layer and a sensor layer. Some research in this direction is already
taking place, PSL have for example been considered for integration with a high
level controller based on semantic networks (Fonooni et al., 2012).

The architecture could also be extended to a hierarchical structure with one
instance of PSL running on each layer in the system. The lowest layer would
interact with sensors and actuators of the robot. Layers higher up in the hier-
archy would interact with the responsibility signals of the layer directly below
and in this way affect the behavior of the system as a whole. The temporal
resolution of PSL would decrease upwards in the hierarchy, allowing hypotheses
on higher levels to extend over longer periods of time. Similarly to the hier-
archical architectures discussed in Section 1, information in form of prediction
errors would also be propagated as inputs to the layer directly above.

While a hierarchical version of PSL has many strong similarities with both
HAMMER (Demiris & Khadhouri, 2006) and HMOSAIC (Haruno et al., 2003)
there are also important differences. PSL contexts can share information in a
straightforward way, not directly possible with the strictly separated modules
proposed by HAMMER, and HMOSAIC. We also make a emphasis on modules
that are semi-reactive, following the division of labor between layers presented
in Section 1. Both these properties are to large extent shared with RNNPB.
While a recurrent neural network could be expected to handle dimensionality
better than PSL, it may have drawbacks in the sense that it is more difficult to
progressively extend the models size in the way PSL does. We hope to be able
to conduct a comparison between PSL and RNNPB in future work.
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